
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs!
!

Some not-so-good sorting approaches!
!

Bitonic sort!
!

QuickSort!
!

Concurrent kernels and recursion

35(83)

35(83)

Information Coding / Computer Graphics, ISY, LiTH

Adapt algorithms to parallel
execution!

!
Many sorting algorithms are highly sequential!

!
Suitable for parallel implementation?!

!
• Data driven execution!

!
• Data independent execution

36(83)36(83)

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution!
!

Computing pattern depends on data!
!

Usually harder to parallellize!!
!

Example: QuickSort.

37(83)37(83)

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution!
!

Known computing pattern!
!

Easier to parallellize - always the same plan!
!

Example: Bitonic sort

38(83)38(83)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort!
!

Loop through data, compare neighbors!
!

Extremely sequential!
!

Inefficient!
!

Parallel version: Bubble sort with odd-even transposition
method!

!
Compare all items pairwise!

!
Two phases, ”odd phase” and ”even phase” (shifted one step)

39(83)39(83)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version!
!

Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)!
!

Fully sorted after n phases

Even phase

O(n2)
Odd phase

40(83)40(83)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality!
!

• Appears to have possibilities to use shared memory but
with some costly transfers at edges between blocks.!

!
• But certainly not optimal at very large sizes!

!
Perfect for sorting many small sets but not one large!!

!
”Better” algorithms don’t necessary beat this all that easily!

41(83)41(83)

Information Coding / Computer Graphics, ISY, LiTH

Rank sort!
!

Count number of items that are smaller!
!

Values must be unique!!
!

Easy to parallelize:!
!

• One thread per item!
!

• Loop through entire data!
!

• Store in index decided from count of number of smaller items.

42(83)42(83)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Again, not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.!

!
• Again, O(n2): Will grow at very large sizes!

!
!

Two bad ones that are not quite as bad as they seem.!
!

N parallel iterations may beat NlogN sequential ones!

43(83)43(83)

Information Coding / Computer Graphics, ISY, LiTH

Rank sort optimization!

Everybody want to know what rank they have.!
They all need to compare to everything.!

For each block of N threads!
Split memory in chunks of N!

Read chunk shared, one per thread!
Synchronize!

Read through chunk in shared!
Writing result is conflict free

Just as exercise

44(83)44(83)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic merge sort!
!

Bitonic set: Two monotonic parts in different direction.!
!
!
!
!
!

1
4

7
8

11
12

14
13

10
9

6
5

3
2

45(83)45(83)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic merge sort!
!

(According to Batcher:) Let a be a bitonic set with a maximum at k,
consisting of two monotonic parts, one increasing, a- (from item 1 to

k) and one decreasing, a+ (k+1 to n)!
!

Then two new sets can be constructed as!
!

a’ = min(a1, ak+1), min(a2, ak+2)…!
a” = max(a1, ak+1), max(a2, ak+2)…!

!
These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+

46(83)46(83)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-conquer!
!

Bitonic sort works on a bitonic sequence: partially
sorted!

!
The parts must be sorted. Sort them by bitonic sort!

47(83)47(83)

Information Coding / Computer Graphics, ISY, LiTH

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Bitonic sort example

Bitonic sort of
smaller parts

Reverse parts
(bitonic merge)

Bitonic sort
of main part

Reverse parts
(bitonic merge)

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
4
2
6
5
7
8

1
3
7
8
6
5
4
2

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

48(83)48(83)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example!
!

The problem scales nicely, uniformly

More stages gives longer stages
(Image inspired by one from Wikipedia)

49(83)49(83)

Information Coding / Computer Graphics, ISY, LiTH

15
12
1
3

16
9

13
8

10
6
7
5

14
4
2

11

12
15
3
1
9

16
13
8
6

10
7
5
4

14
11
2

3
1

12
15
13
16
9
8
6
5
7

10
11
14
4
2

1
3

12
15
16
13
9
8
5
6
7

10
14
11
4
2

1
3
9
8

16
13
12
15
14
11
7

10
5
6
4
2

1
3
9
8

12
13
16
15
14
11
7

10
5
6
4
2

1
3
8
9
12
13
15
16
14
11
10
7
6
5
4
2

1
3
8
7
6
5
4
2

14
11
10
9

12
13
15
16

1
3
4
2
6
5
8
7

12
11
10
9

14
13
15
16

1
2
4
3
6
5
8
7

10
9

12
11
14
13
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

50(83)50(83)

Information Coding / Computer Graphics, ISY, LiTH

Get those steps right!
!

Step length!
!

Step direction!
!

Comparison direction!
!

Calculated from stage number and stage length

51(83)51(83)

Information Coding / Computer Graphics, ISY, LiTH

Code examples!
!

Sequential:!
!

Recursive example!
!

Iterative example!
!

Parallel:!
!

CUDA example (not optimized)

52(83)52(83)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort features!
!

• Data independent, no worst case!
!

• Fast: O(n·log2n) (Why?)!
!

• Good locality in some parts!
!

but!
!

• Big leaps in addressing for some parts

53(83)53(83)

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?!
!

Small leaps: Can be computed within one block.
Shared memory friendly.!

!
Big leaps (>number of threads/block): No
synchronization possible between blocks!!

!
But we must synchronize!!

!
-> multiple kernel runs!

54(83)54(83)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort!
!

Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form
two subsets, repeat

Data driven, data dependent reorganization, non-uniform!
!
Fancy name - nobody expect QuickSort to be nothing but optimal

55(83)55(83)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort is!
!

Fast: O(n·logn) in typical cases!
!

O(n2) in the worst case!
!

Data driven, data dependent reorganization, non-uniform!

56(83)56(83)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU!
!

Initially ignored as impractical!
!

CUDA implementations exist!
!

Data driven approaches increasingly suitable as
GPUs become more flexible

57(83)57(83)

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort!
!

Several stages to consider:!
!

• Pivot selection. Usually just grab one.!
!

• Comparisons!
!

• Partitioning!
!

• Concatenate result

58(83)58(83)

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection!
!

If we could always pick a pivot that splits the data in half…

That would be greeat…

59(83)59(83)

Information Coding / Computer Graphics, ISY, LiTH

but you can’t do that without sorting! (Or a
histogram.) But how about a random one?

There is a worst case caused by bad pivots. Live with it!

60(83)60(83)

Information Coding / Computer Graphics, ISY, LiTH

Comparisons!
!

Easy to parallelize!
!

One thread per comparison not unreasonable! (GPUs
don’t have a problem with many threads!)!

!
No problem!

61(83)61(83)

Information Coding / Computer Graphics, ISY, LiTH

Partitioning!
!

The big problem!!
!

Sequential partitioning: Bad!!
!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)!

!
Parallel partitioning 2: Divide and conquer

62(83)62(83)

Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible!
!

Split to two list of same size as original. Massive
number of threads!!

!
Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G

63(83)63(83)

Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial!
!

Data dependent!
!

Use parallel prefix sum to create a look-up table for addressing.!
!

Computes sum of all previous items.!
!

Takes logN steps to perform.

64(83)64(83)

Information Coding / Computer Graphics, ISY, LiTH

#1 #2 #3 #4 #5 #6 #7 #8

#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

#1 0 #3 #1+2 #5 #1..4 #7 #1..6

#1 #1+2 #3 0 #5 #5+6 #7 #1..4

#1 #1+2 #3 #1..4 #5 #5+6 #7 0

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

Zero

Zero

Zero

0 #1 #1+2 #1..3 #1..4 #1..5 #1..6 #1..7

Zero

Parallel prefix sum!
!

Similar to reduction but full output.

65(83)65(83)

Information Coding / Computer Graphics, ISY, LiTH

3 0 8 9 4 18 2 23

3 9 8 0 4 5 2 18

3 9 8 18 4 5 2 0

3 9 8 18 4 5 2 30

0 3 9 17 18 22 23 25

Zero

Zero

Zero

Zero

3 6 8 1 4 1 2 5

3 9 8 9 4 5 2 7

3 9 8 18 4 5 2 12

3 9 8 18 4 5 2 30

Parallel prefix sum!
!

Example

66(83)66(83)

Information Coding / Computer Graphics, ISY, LiTH

0 0 1 1 0 3 1 3

0 1 1 0 0 0 1 3

0 1 1 3 0 0 1 0

0 1 1 3 0 0 1 4

0 0 1 2 3 3 3 4

Zero

Zero

Zero

Zero

0 1 1 1 0 0 1 0

0 1 1 2 0 0 1 1

0 1 1 3 0 0 1 1

0 1 1 3 0 0 1 4

For sorting: Binary parallel prefix sum

67(83)67(83)

Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum on GPU!
!

• No reason to use few threads. Use as many as you
have output items.!

!
• Multiple kernel runs to adapt to problem size

variation.!
!

• As described above, non-coalesced. Pack
intermediate values for coalescing. If using shared

memory, risk of bank conflicts. [Capannini]

68(83)68(83)

Information Coding / Computer Graphics, ISY, LiTH

Thus, QuickSort is not impossible, but more
complex than before.!

!
Note:!
!

GPUs have Compare-And-Swap atomics!!
!

GPUs favor massive numbers of threads. One thread per
comparison is more than OK!!

!
Implementations available. Example:!

!
https://sourceforge.net/projects/cuda-quicksort/

69(83)69(83)

Information Coding / Computer Graphics, ISY, LiTH

Recursion!
!

GPUs can’t do recursion efficiently… or can they?!
!

Since Kepler we have concurrent kernels!
!

Not only a matter of launching kernels from CPU!!
!

A kernel can spawn new kernels!!
!

Do recursion by spawning new kernels!

70(83)70(83)

Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism!
!

Less work for the CPU to manage the computation.!

71(83)71(83)

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:!

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really
do a good job on
partitioning?

72(83)72(83)

Information Coding / Computer Graphics, ISY, LiTH

Advantages!
!

• Less work for CPU!
!

• Less synchronizing (from CPU side)!
!

• Easier programming!

They claim it matters
this much (but your
milage will vary)

73(83)73(83)

Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a
significant improvement, powerful

option

74(83)74(83)

Information Coding / Computer Graphics, ISY, LiTH

Many other sorting algorithms exist...
like this one this year:

75(83)75(83)

Information Coding / Computer Graphics, ISY, LiTH

Other non-trivial algorithms!
!

FFT, Fast Fourier Transform!
!

Distance transform!
!

Fractal Brownian Motion

76(83)76(83)

Information Coding / Computer Graphics, ISY, LiTH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

0

0

0

0

0

2

4

6

0

0

0

0

0

2

4

6

0

0

0

4

0

0

0

4

0

0

0

4

0

0

0

4

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

stage 1 stage 2 stage 3 stage 4

Epoch

Fast Fourier Transform!
!

Based on a sequence of "butterflies"!
!

Similarily to Bitonic sort, can be computed several stage in
one run for the "smaller" stages

77(83)77(83)

Information Coding / Computer Graphics, ISY, LiTH

Distance transform!
!

Fast and simple version by Danielsson 1980: "Jump flooding"!
!

Makes "jumps" of various length

Every "jump" needs
to be one kernel

run!

78(83)78(83)

Information Coding / Computer Graphics, ISY, LiTH

Fractal Brownian Motion!
!

Used for e.g. realistic looking procedural terrains!
!

Among other methods:!
!

• Diamond-square!
!

• Multi-pass Perlin noise

79(83)79(83)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

1) Midpoint from corners!
!

2) Edge from corners and midpoints

Repeat to
desired

resolution

80(83)80(83)

Information Coding / Computer Graphics, ISY, LiTH

Multi-pass Perlin noise!
!

Theoretically slower than Diamond-square!
!

BUT!
!

can be computed by independent threads! One
kernel run!

Single octave!
!

FBM needs log N passes of
different frequency

81(83)81(83)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion!
!

Algorithms with dependency in computed data often
need multiple kernel runs.!

!
This is an extra cost!!

!
Does it pay when the computational complexity is

lower?

82(83)82(83)

Information Coding / Computer Graphics, ISY, LiTH

That's all folks!

83(83)83(83)

