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Sorting on GPUs!
!

Some not-so-good sorting approaches!
!

Bitonic sort!
!

QuickSort!
!

Concurrent kernels and recursion
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Adapt algorithms to parallel 
execution!

!
Many sorting algorithms are highly sequential!

!
Suitable for parallel implementation?!

!
• Data driven execution!

!
• Data independent execution
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Data driven execution!
!

Computing pattern depends on data!
!

Usually harder to parallellize!!
!

Example: QuickSort.
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Data independent execution!
!

Known computing pattern!
!

Easier to parallellize - always the same plan!
!

Example: Bitonic sort
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Bubble sort!
!

Loop through data, compare neighbors!
!

Extremely sequential!
!

Inefficient!
!

Parallel version: Bubble sort with odd-even transposition 
method!

!
Compare all items pairwise!

!
Two phases, ”odd phase” and ”even phase” (shifted one step)
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Bubble sort, parallel version!
!

Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)!
!

Fully sorted after n phases

Even phase

O(n2)
Odd phase
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Suitable for GPU?!
!

Not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality!
!

• Appears to have possibilities to use shared memory but 
with some costly transfers at edges between blocks.!

!
• But certainly not optimal at very large sizes!

!
Perfect for sorting many small sets but not one large!!

!
”Better” algorithms don’t necessary beat this all that easily!
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Rank sort!
!

Count number of items that are smaller!
!

Values must be unique!!
!

Easy to parallelize:!
!

• One thread per item!
!

• Loop through entire data!
!

• Store in index decided from count of number of smaller items.
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Suitable for GPU?!
!

Again, not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality - especially good for broadcasting (e.g. 
constant memory). Also suitable for shared memory.!

!
• Again, O(n2): Will grow at very large sizes!

!
!

Two bad ones that are not quite as bad as they seem.!
!

N parallel iterations may beat NlogN sequential ones!
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Rank sort optimization!

Everybody want to know what rank they have.!
They all need to compare to everything.!

For each block of N threads!
Split memory in chunks of N!

Read chunk shared, one per thread!
Synchronize!

Read through chunk in shared!
Writing result is conflict free

Just as exercise
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Bitonic merge sort!
!

Bitonic set: Two monotonic parts in different direction.!
!
!
!
!
!
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Bitonic merge sort!
!

(According to Batcher:) Let a be a bitonic set with a maximum at k, 
consisting of two monotonic parts, one increasing, a- (from item 1 to 

k) and one decreasing, a+ (k+1 to n)!
!

Then two new sets can be constructed as!
!

a’ = min(a1, ak+1), min(a2, ak+2)…!
a” = max(a1, ak+1), max(a2, ak+2)…!

!
These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+
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Bitonic sort by divide-and-conquer!
!

Bitonic sort works on a bitonic sequence: partially 
sorted!

!
The parts must be sorted. Sort them by bitonic sort!
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Bitonic sort example

Bitonic sort of 
smaller parts

Reverse parts 
(bitonic merge)

Bitonic sort 
of main part

Reverse parts 
(bitonic merge)
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Bigger example!
!

The problem scales nicely, uniformly

More stages gives longer stages
(Image inspired by one from Wikipedia)
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Get those steps right!
!

Step length!
!

Step direction!
!

Comparison direction!
!

Calculated from stage number and stage length
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Code examples!
!

Sequential:!
!

Recursive example!
!

Iterative example!
!

Parallel:!
!

CUDA example (not optimized)
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Bitonic sort features!
!

• Data independent, no worst case!
!

• Fast: O(n·log2n) (Why?)!
!

• Good locality in some parts!
!

but!
!

• Big leaps in addressing for some parts
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What about those big leaps?!
!

Small leaps: Can be computed within one block. 
Shared memory friendly.!

!
Big leaps (>number of threads/block): No 
synchronization possible between blocks!!

!
But we must synchronize!!

!
-> multiple kernel runs!
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QuickSort!
!

Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form 
two subsets, repeat

Data driven, data dependent reorganization, non-uniform!
!
Fancy name - nobody expect QuickSort to be nothing but optimal
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QuickSort is!
!

Fast: O(n·logn) in typical cases!
!

O(n2) in the worst case!
!

Data driven, data dependent reorganization, non-uniform!
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QuickSort on GPU!
!

Initially ignored as impractical!
!

CUDA implementations exist!
!

Data driven approaches increasingly suitable as 
GPUs become more flexible
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Parallel QuickSort!
!

Several stages to consider:!
!

• Pivot selection. Usually just grab one.!
!

• Comparisons!
!

• Partitioning!
!

• Concatenate result
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Pivot selection!
!

If we could always pick a pivot that splits the data in half…

That would be greeat…
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but you can’t do that without sorting! (Or a 
histogram.) But how about a random one?

There is a worst case caused by bad pivots. Live with it!
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Comparisons!
!

Easy to parallelize!
!

One thread per comparison not unreasonable! (GPUs 
don’t have a problem with many threads!)!

!
No problem!
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Partitioning!
!

The big problem!!
!

Sequential partitioning: Bad!!
!

Parallel partitioning 1: Atomic fetch & increment. 
(GPUs have atomics!)!

!
Parallel partitioning 2: Divide and conquer
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In-place sorting not feasible!
!

Split to two list of same size as original. Massive 
number of threads!!

!
Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G
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Packing to smaller size not trivial!
!

Data dependent!
!

Use parallel prefix sum to create a look-up table for addressing.!
!

Computes sum of all previous items.!
!

Takes logN steps to perform.
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#1 #2 #3 #4 #5 #6 #7 #8

#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

#1 0 #3 #1+2 #5 #1..4 #7 #1..6

#1 #1+2 #3 0 #5 #5+6 #7 #1..4

#1 #1+2 #3 #1..4 #5 #5+6 #7 0

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

Zero

Zero

Zero

0 #1 #1+2 #1..3 #1..4 #1..5 #1..6 #1..7

Zero

Parallel prefix sum!
!

Similar to reduction but full output.
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3 0 8 9 4 18 2 23

3 9 8 0 4 5 2 18

3 9 8 18 4 5 2 0

3 9 8 18 4 5 2 30

0 3 9 17 18 22 23 25

Zero

Zero

Zero

Zero

3 6 8 1 4 1 2 5

3 9 8 9 4 5 2 7

3 9 8 18 4 5 2 12

3 9 8 18 4 5 2 30

Parallel prefix sum!
!

Example
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0 0 1 1 0 3 1 3

0 1 1 0 0 0 1 3

0 1 1 3 0 0 1 0

0 1 1 3 0 0 1 4

0 0 1 2 3 3 3 4

Zero

Zero

Zero

Zero

0 1 1 1 0 0 1 0

0 1 1 2 0 0 1 1

0 1 1 3 0 0 1 1

0 1 1 3 0 0 1 4

For sorting: Binary parallel prefix sum
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Parallel prefix sum on GPU!
!

•  No reason to use few threads. Use as many as you 
have output items.!

!
• Multiple kernel runs to adapt to problem size 

variation.!
!

• As described above, non-coalesced. Pack 
intermediate values for coalescing. If using shared 

memory, risk of bank conflicts. [Capannini]
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Thus, QuickSort is not impossible, but more 
complex than before.!

!
Note:!
!

GPUs have Compare-And-Swap atomics!!
!

GPUs favor massive numbers of threads. One thread per 
comparison is more than OK!!

!
Implementations available. Example:!

!
https://sourceforge.net/projects/cuda-quicksort/
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Recursion!
!

GPUs can’t do recursion efficiently… or can they?!
!

Since Kepler we have concurrent kernels!
!

Not only a matter of launching kernels from CPU!!
!

A kernel can spawn new kernels!!
!

Do recursion by spawning new kernels!
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Concurrent kernels, Dynamic Parallelism!
!

Less work for the CPU to manage the computation.!
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Recursion can look like this:!

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really 
do a good job on 
partitioning?
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Advantages!
!

• Less work for CPU!
!

• Less synchronizing (from CPU side)!
!

• Easier programming!

They claim it matters 
this much (but your 
milage will vary)
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Recursive CUDA kernels, a 
significant improvement, powerful 

option
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Many other sorting algorithms exist... 
like this one this year:
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Other non-trivial algorithms!
!

FFT, Fast Fourier Transform!
!

Distance transform!
!

Fractal Brownian Motion
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Fast Fourier Transform!
!

Based on a sequence of "butterflies"!
!

Similarily to Bitonic sort, can be computed several stage in 
one run for the "smaller" stages
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Distance transform!
!

Fast and simple version by Danielsson 1980: "Jump flooding"!
!

Makes "jumps" of various length

Every "jump" needs 
to be one kernel 

run!
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Fractal Brownian Motion!
!

Used for e.g. realistic looking procedural terrains!
!

Among other methods:!
!

• Diamond-square!
!

• Multi-pass Perlin noise
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Diamond-square algorithm!
!

1) Midpoint from corners!
!

2) Edge from corners and midpoints

Repeat to 
desired 

resolution
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Multi-pass Perlin noise!
!

Theoretically slower than Diamond-square!
!

BUT!
!

can be computed by independent threads! One 
kernel run!

Single octave!
!

FBM needs log N passes of 
different frequency
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Conclusion!
!

Algorithms with dependency in computed data often 
need multiple kernel runs.!

!
This is an extra cost!!

!
Does it pay when the computational complexity is 

lower?
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That's all folks!
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