

Sorting on GPUs

Some not-so-good sorting approaches

Bitonic sort

QuickSort

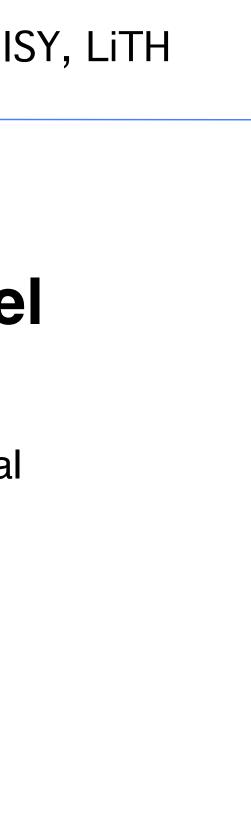
Concurrent kernels and recursion

Adapt algorithms to parallel execution

Many sorting algorithms are highly sequential

Suitable for parallel implementation?

- Data driven execution
- Data independent execution



Data driven execution

Computing pattern depends on data

Usually harder to parallellize!

Example: QuickSort.

Data independent execution

Known computing pattern

Easier to parallellize - always the same plan

Example: Bitonic sort

Bubble sort

Loop through data, compare neighbors

Extremely sequential

Inefficient

Parallel version: Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, "odd phase" and "even phase" (shifted one step)

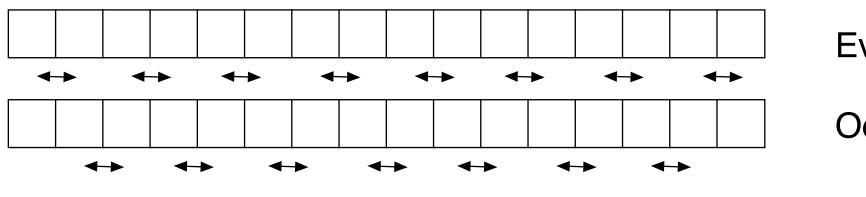
Bubble sort, parallel version

Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, "odd phase" and "even phase" (shifted one step)

Fully sorted after n phases



Even phase Odd phase **O(n²)**

Suitable for GPU?

Not as bad as it seems at first look:

- Data independent
- Excellent locality
- Appears to have possibilities to use shared memory but with some costly transfers at edges between blocks.
 - But certainly not optimal at very large sizes

Perfect for sorting many small sets but not one large!

"Better" algorithms don't necessary beat this all that easily!

Rank sort

Count number of items that are smaller

Values must be unique!

Easy to parallelize:

- One thread per item
- Loop through entire data

Store in index decided from count of number of smaller items.

Suitable for GPU?

Again, not as bad as it seems at first look:

- Data independent
- Excellent locality especially good for broadcasting (e.g. constant memory). Also suitable for shared memory.
 - Again, O(n²): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

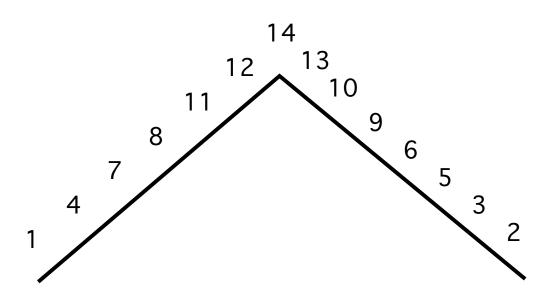
N parallel iterations may beat NlogN sequential ones!

Rank sort optimization

Just as exercise Everybody want to know what rank they have. They all need to compare to everything. For each block of N threads Split memory in chunks of N Read chunk shared, one per thread Synchronize Read through chunk in shared Writing result is conflict free

Bitonic merge sort

Bitonic set: Two monotonic parts in different direction.



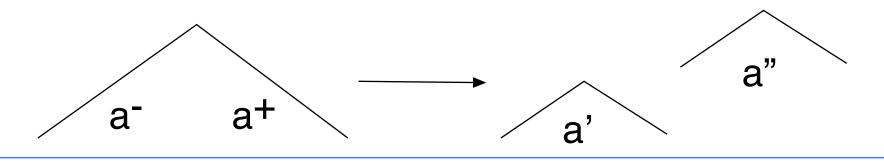
Bitonic merge sort

(According to Batcher:) Let a be a bitonic set with a maximum at k, consisting of two monotonic parts, one increasing, a⁻ (from item 1 to k) and one decreasing, a^+ (k+1 to n)

Then two new sets can be constructed as

 $a' = min(a_1, a_{k+1}), min(a_2, a_{k+2})...$ $a'' = max(a_1, a_{k+1}), max(a_2, a_{k+2})...$

These two sets are also bitonic and $max(a') \le min(a'')!$

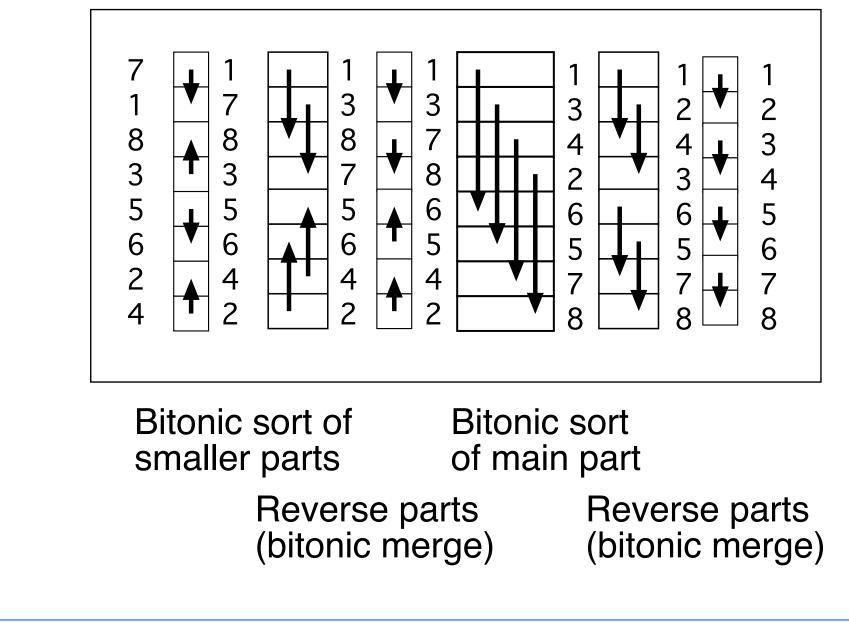


Bitonic sort by divide-and-conquer

Bitonic sort works on a bitonic sequence: partially sorted

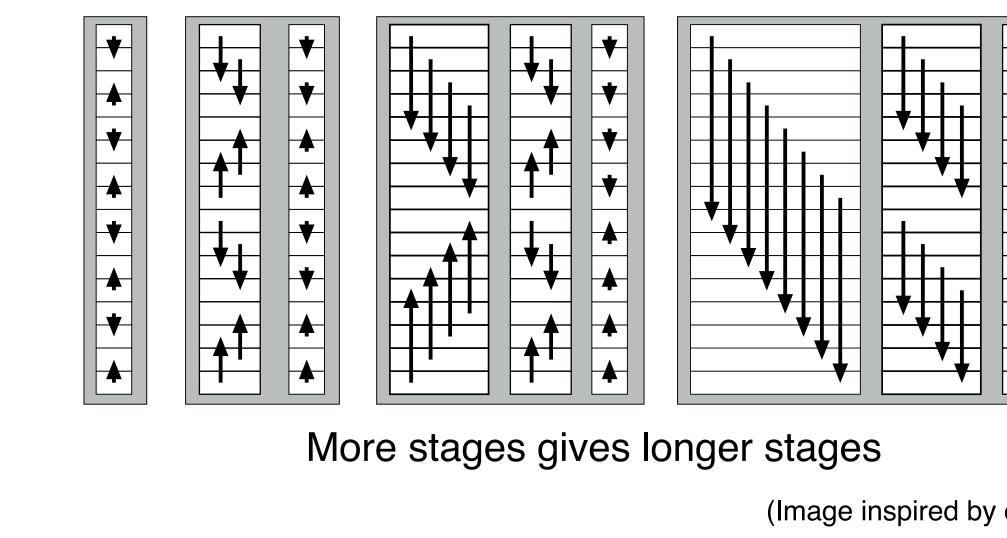
The parts must be sorted. Sort them by bitonic sort!

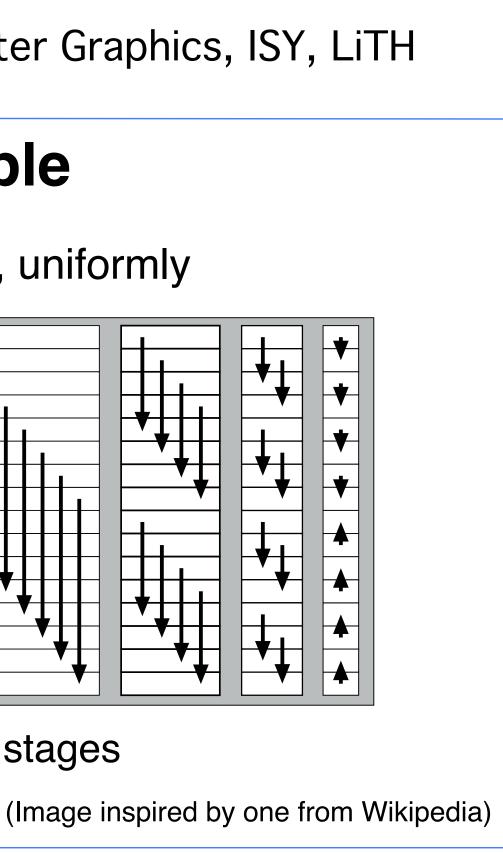
Bitonic sort example

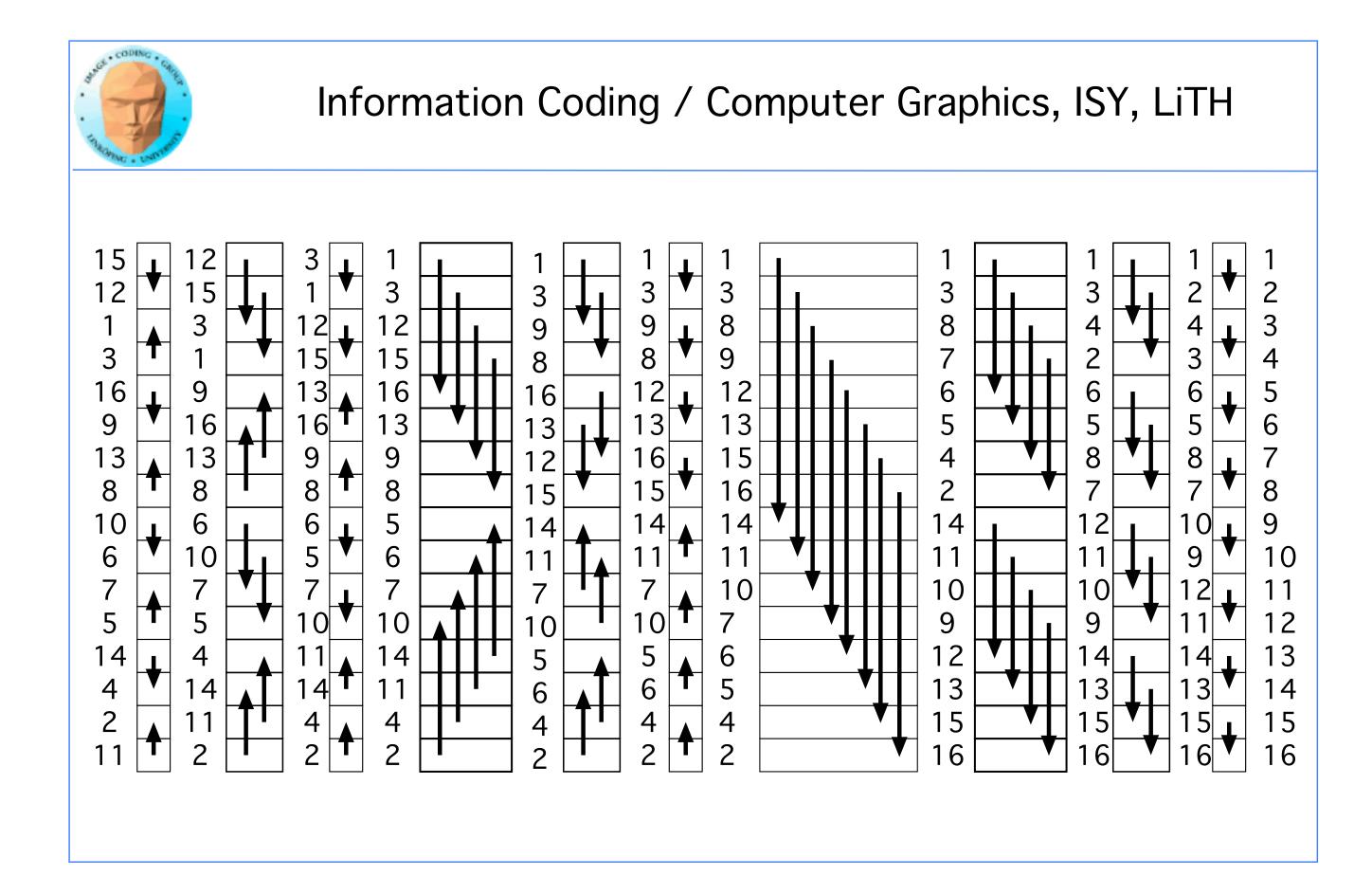


Bigger example

The problem scales nicely, uniformly







Get those steps right

Step length

Step direction

Comparison direction

Calculated from stage number and stage length

Code examples

Sequential:

Recursive example

Iterative example

Parallel:

CUDA example (not optimized)

Bitonic sort features

- Data independent, no worst case
 - Fast: O(n·log²n) (Why?)
 - Good locality in some parts

but

• Big leaps in addressing for some parts

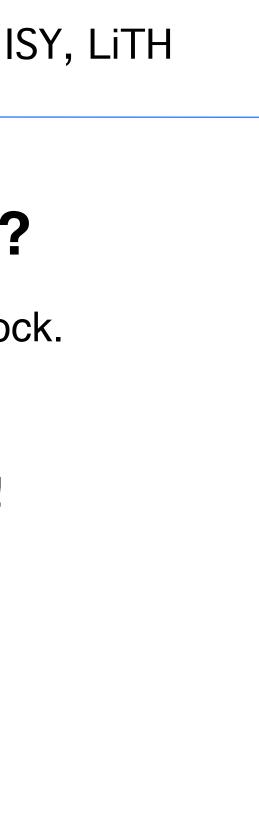
What about those big leaps?

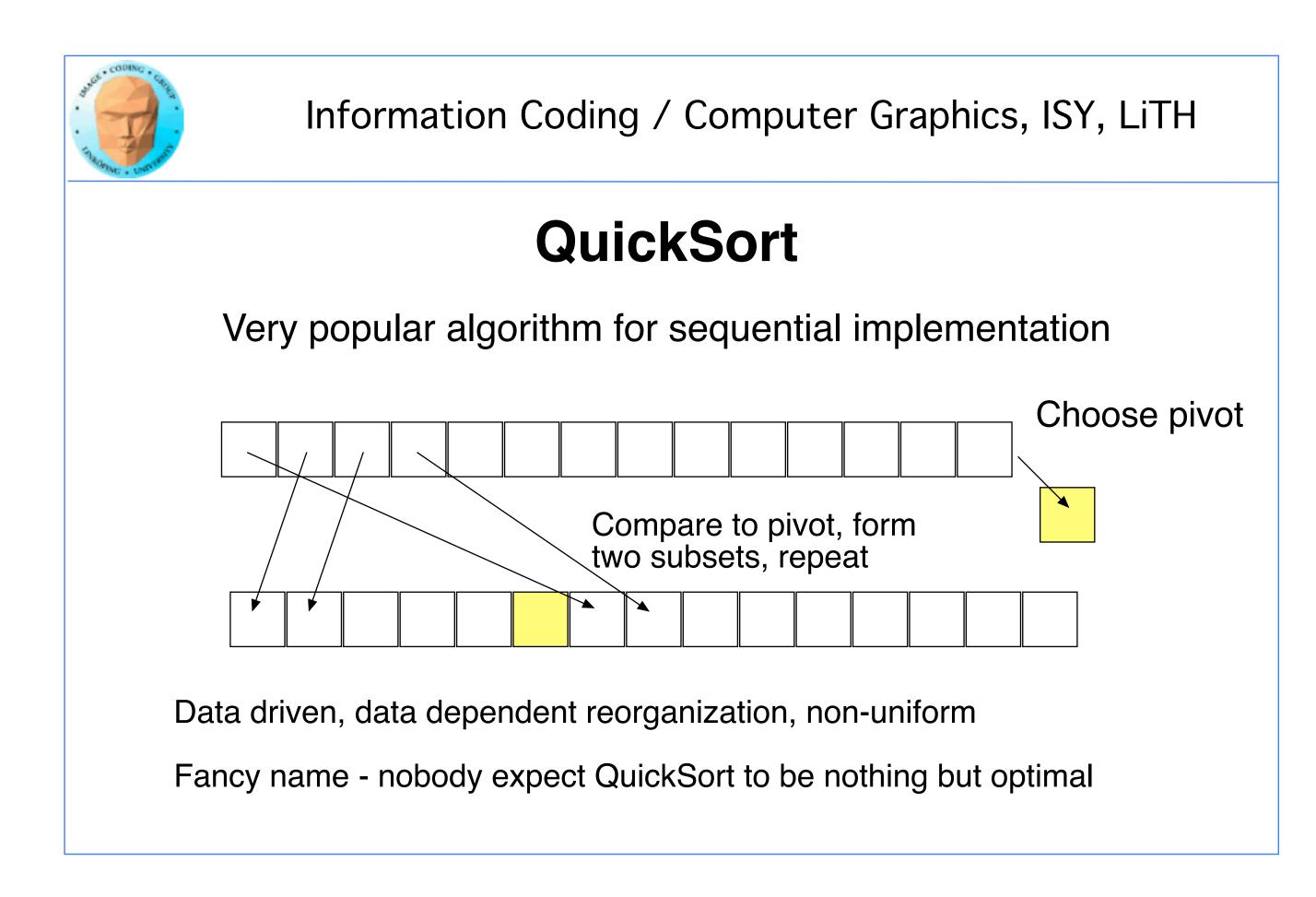
Small leaps: Can be computed within one block. Shared memory friendly.

Big leaps (>number of threads/block): No synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!





QuickSort is

Fast: O(n·logn) in typical cases

 $O(n^2)$ in the worst case

Data driven, data dependent reorganization, non-uniform

QuickSort on GPU

Initially ignored as impractical

CUDA implementations exist

Data driven approaches increasingly suitable as GPUs become more flexible

Parallel QuickSort

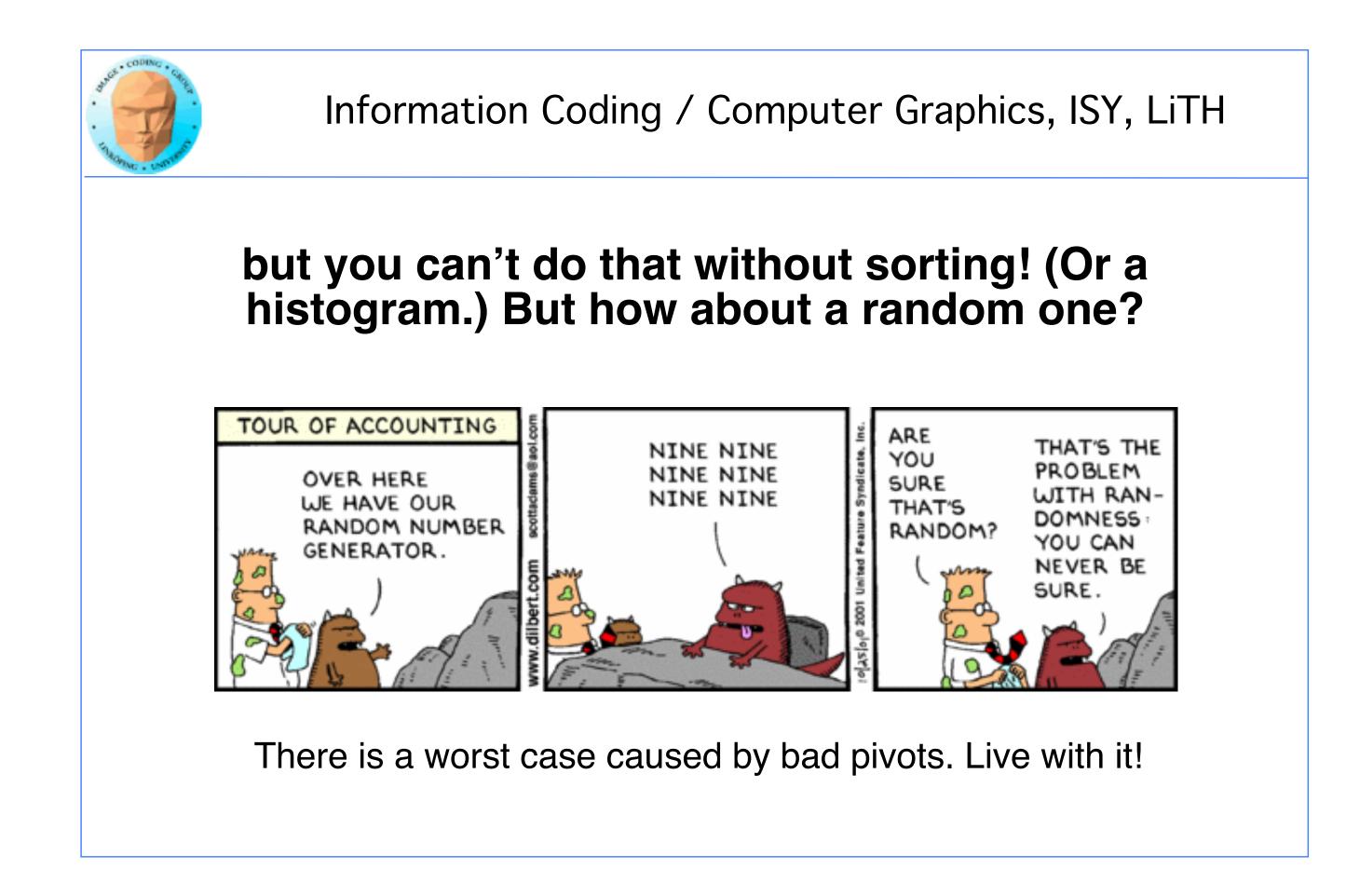
Several stages to consider:

• Pivot selection. Usually just grab one.

- Comparisons
 - Partitioning
- Concatenate result

Pivot selection

If we could always pick a pivot that splits the data in half...



Comparisons

Easy to parallelize

One thread per comparison not unreasonable! (GPUs don't have a problem with many threads!)

No problem!

Partitioning

The big problem!

Sequential partitioning: Bad!

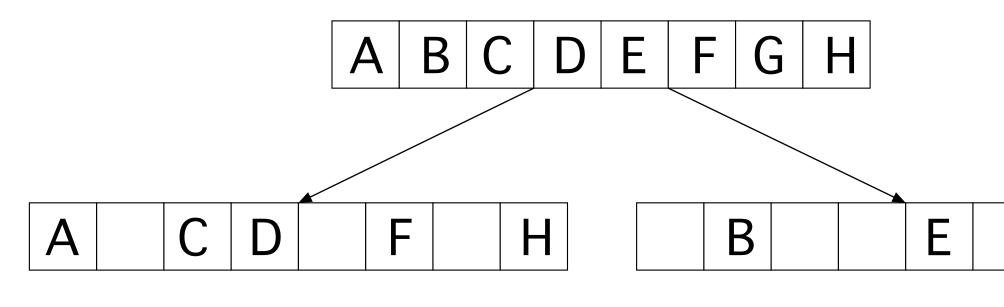
Parallel partitioning 1: Atomic fetch & increment. (GPUs have atomics!)

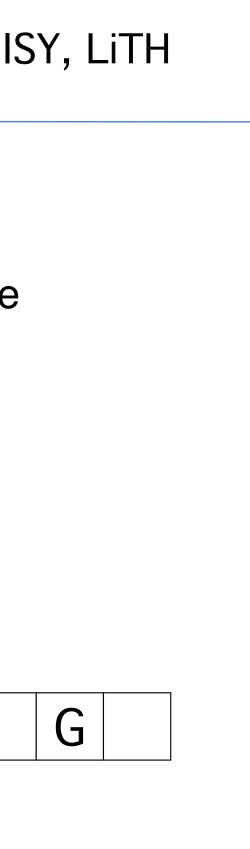
Parallel partitioning 2: Divide and conquer

In-place sorting not feasible

Split to two list of same size as original. Massive number of threads!

Then we must pack to smaller size.





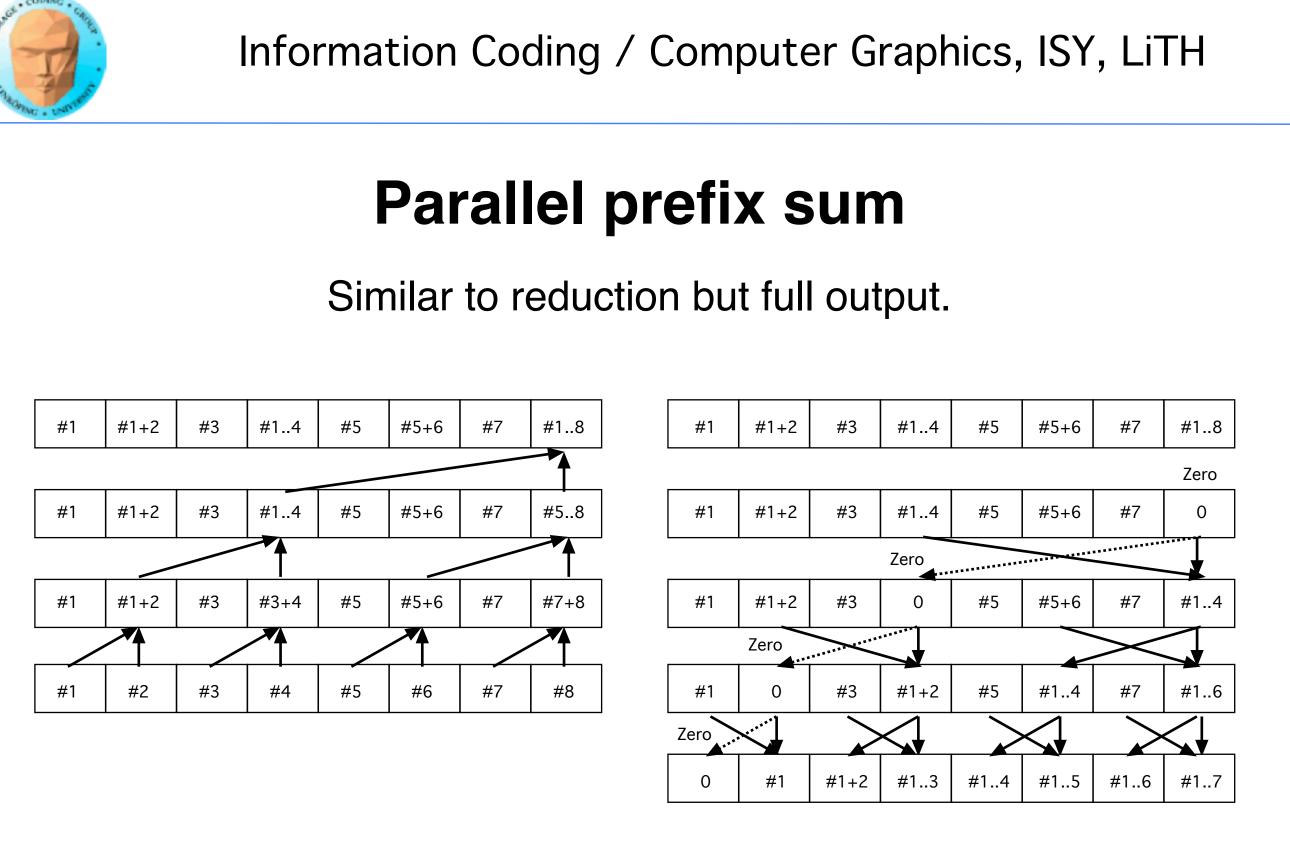
Packing to smaller size not trivial

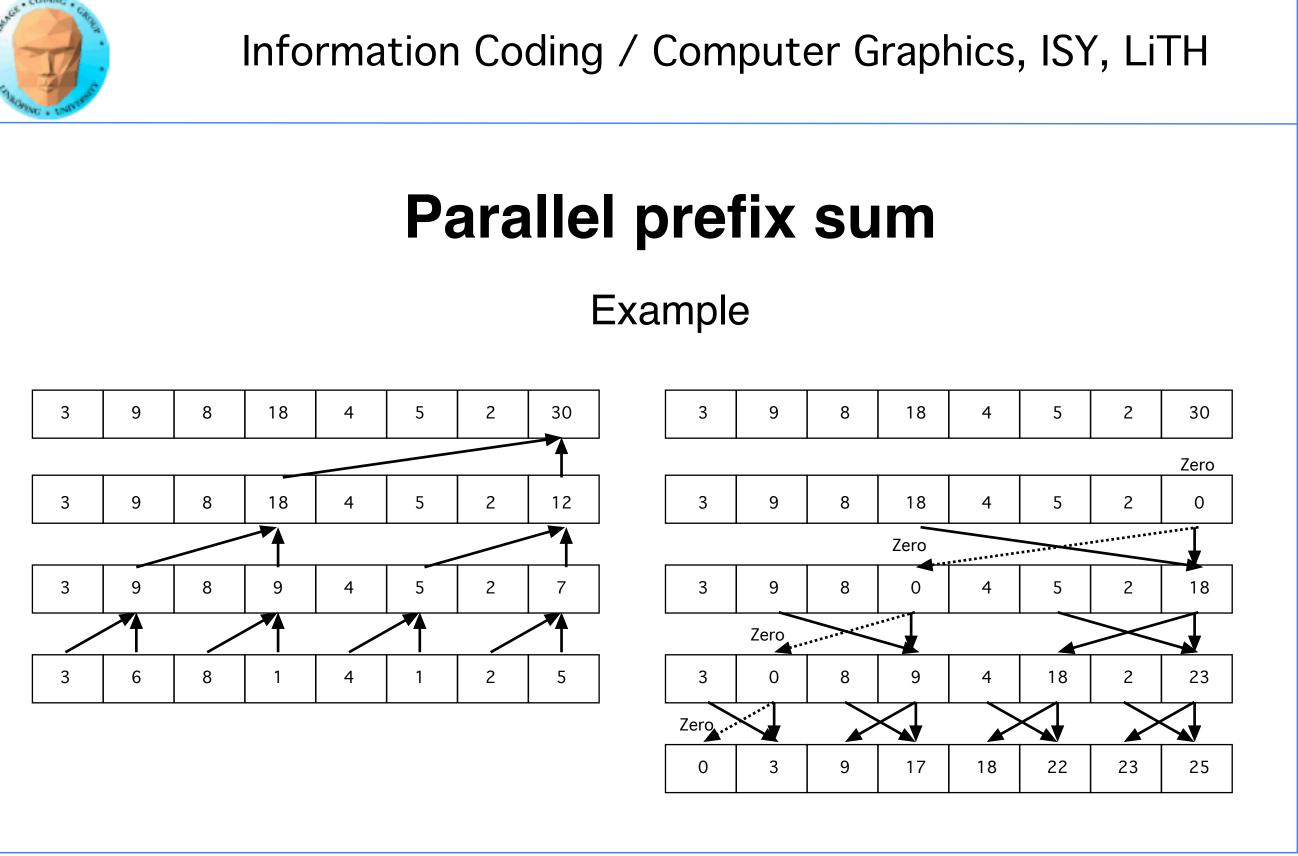
Data dependent

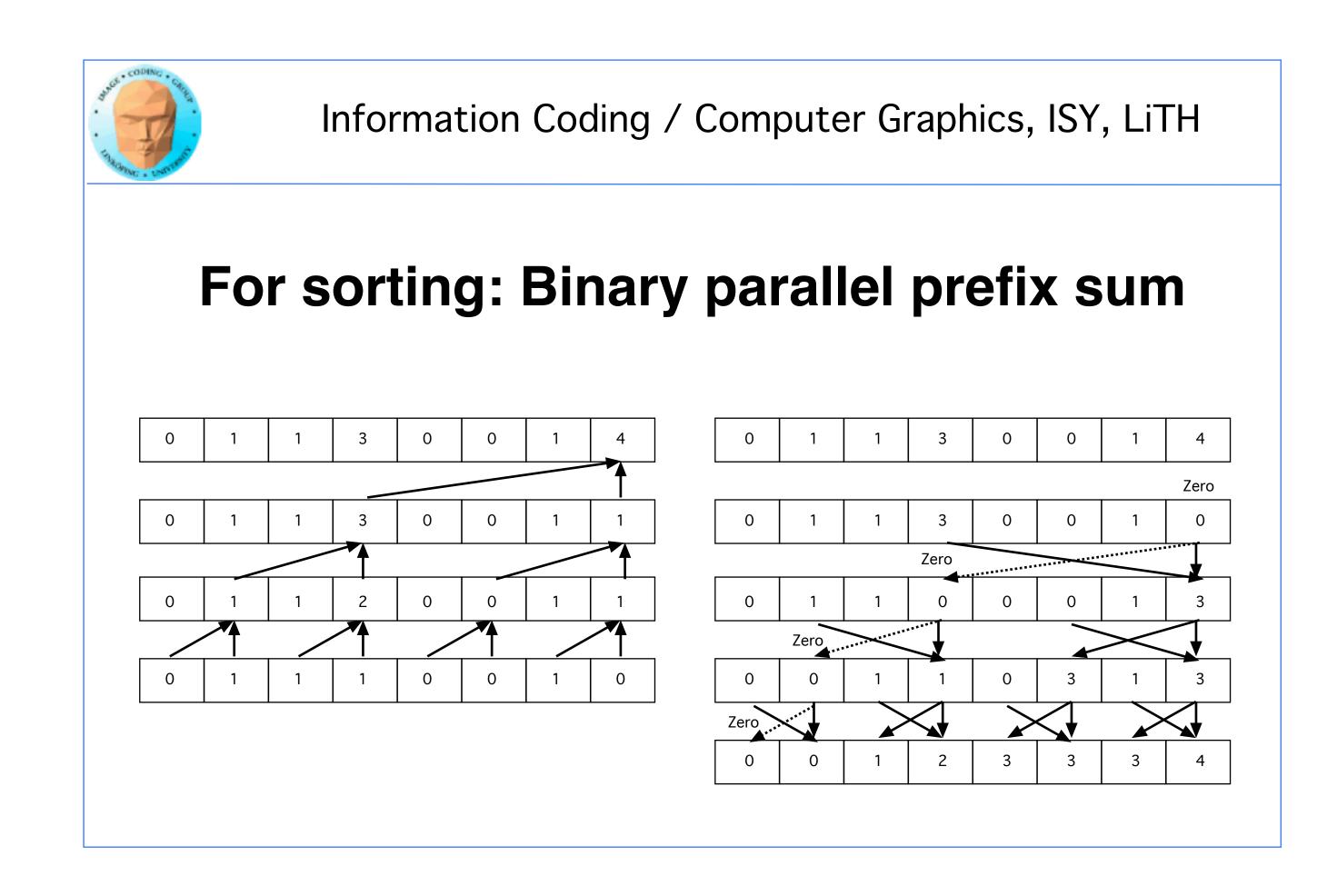
Use *parallel prefix sum* to create a look-up table for addressing.

Computes sum of all previous items.

Takes logN steps to perform.



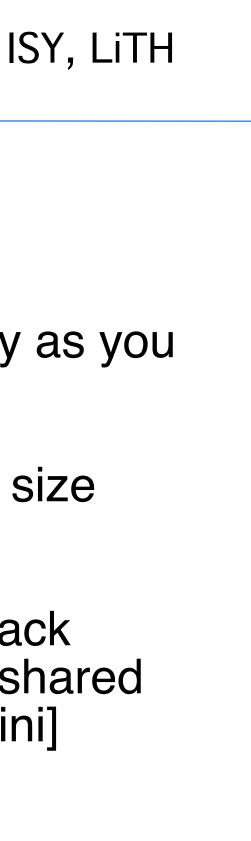




Parallel prefix sum on GPU

- No reason to use few threads. Use as many as you have output items.
 - Multiple kernel runs to adapt to problem size variation.

 As described above, non-coalesced. Pack intermediate values for coalescing. If using shared memory, risk of bank conflicts. [Capannini]



Thus, QuickSort is not impossible, but more complex than before.

Note:

GPUs have Compare-And-Swap atomics!

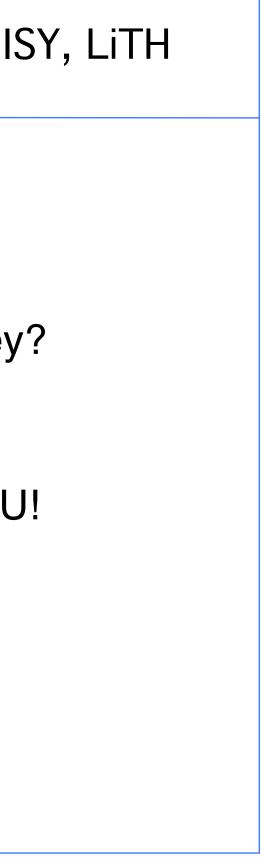
GPUs favor massive numbers of threads. One thread per comparison is more than OK!

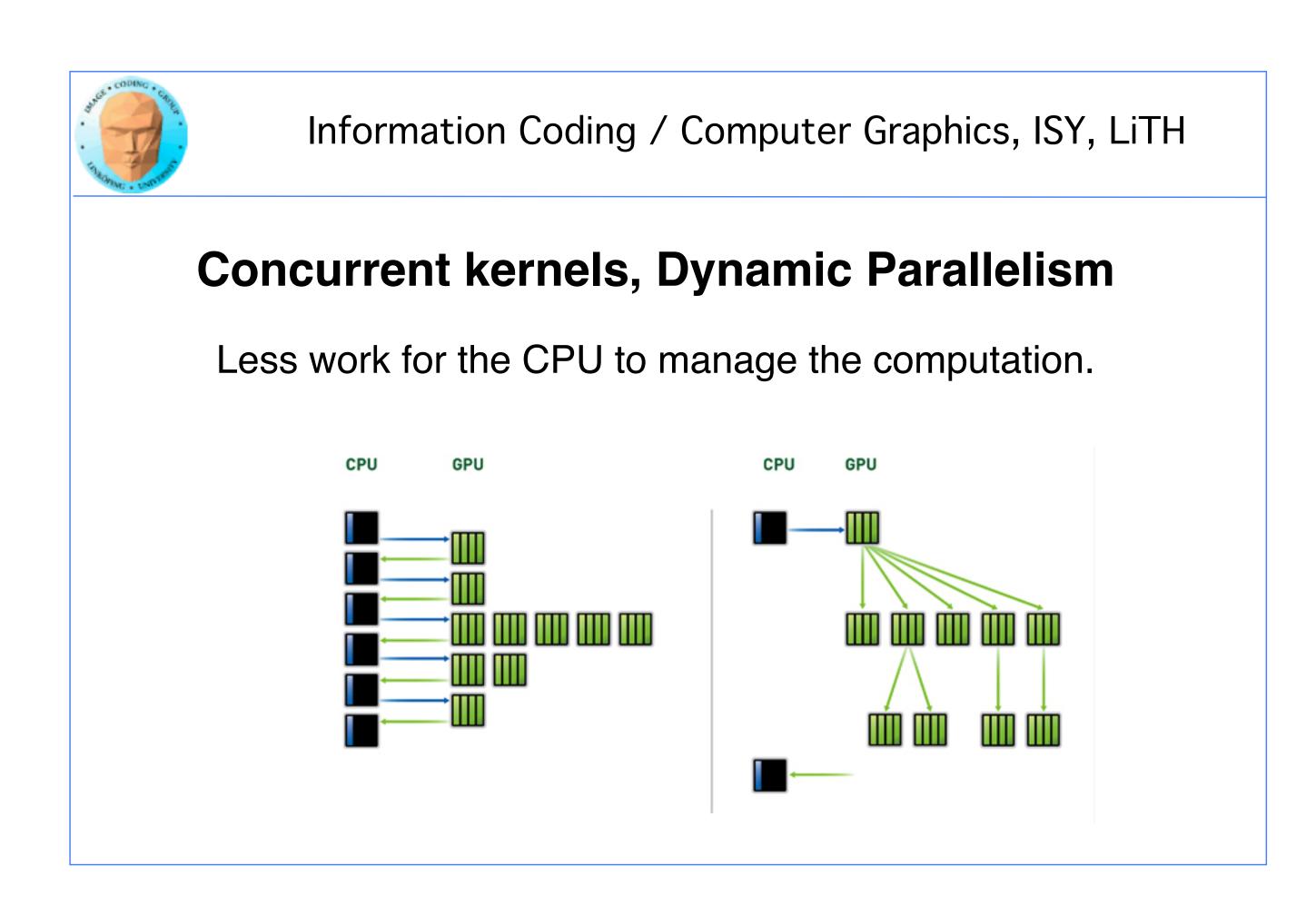
Implementations available. Example:

https://sourceforge.net/projects/cuda-quicksort/

Recursion

GPUs can't do recursion efficiently... or can they? Since Kepler we have concurrent kernels Not only a matter of launching kernels from CPU! A kernel can spawn new kernels! Do recursion by spawning new kernels!



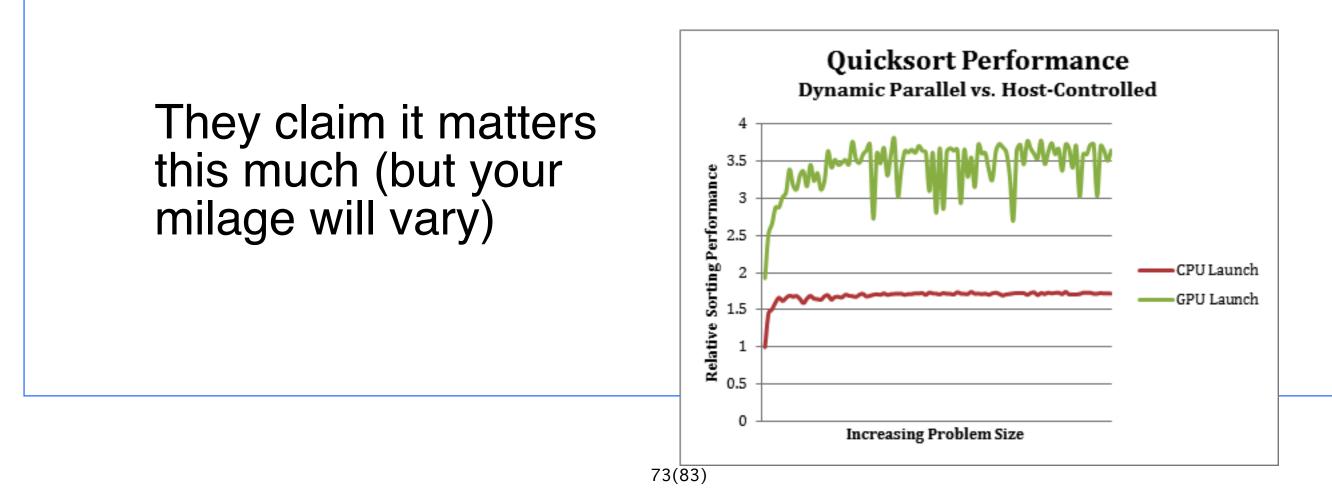


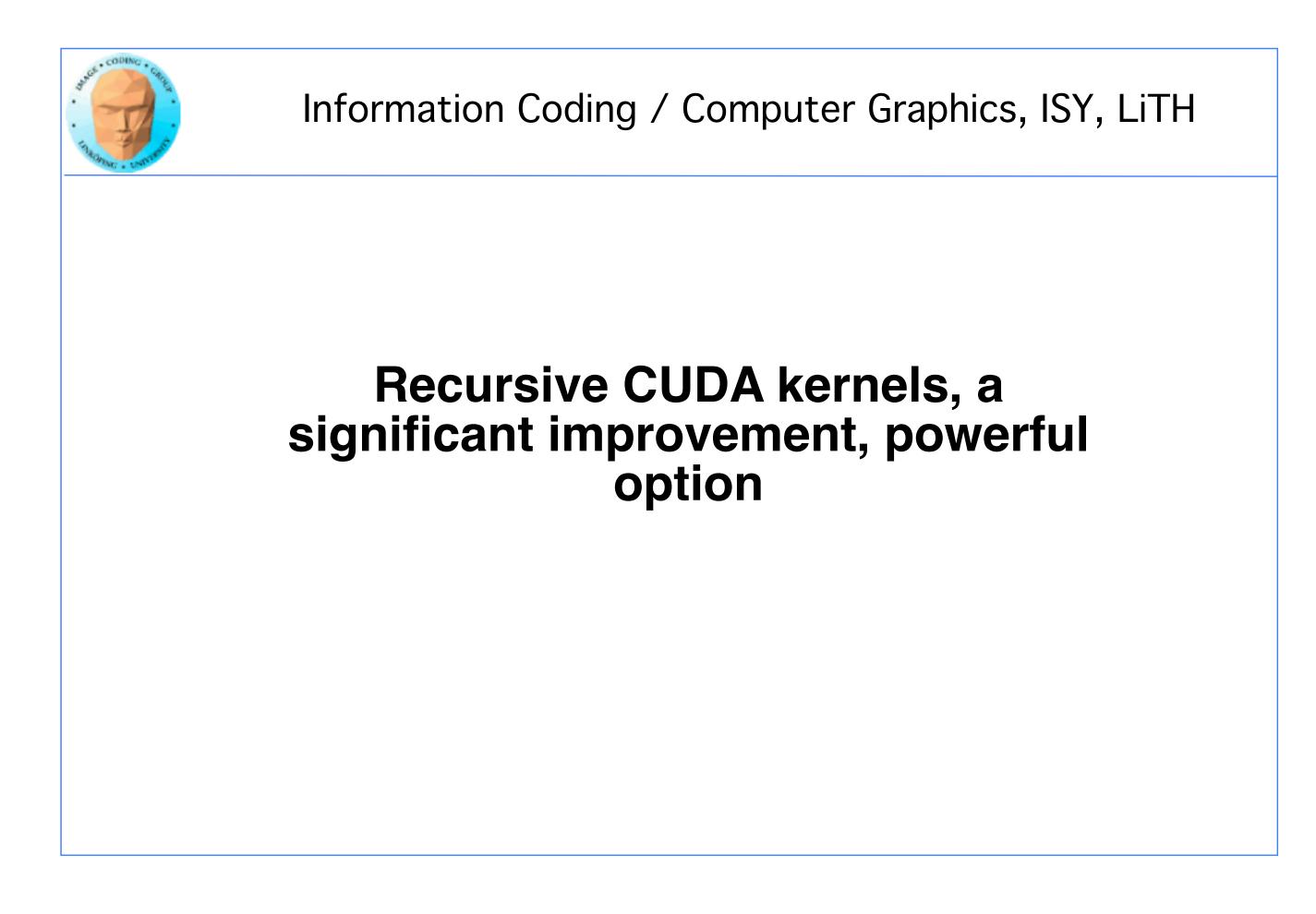
Recursion can look like this:

```
global void quicksort(int *data, int left, int right)
  int nleft, nright;
  cudaStream t s1, s2;
  // Partitions data based on pivot of first element.
  // Returns counts in nleft & nright
  partition(data+left, data+right, data[left], nleft, nright);
  // If a sub-array needs sorting, launch a new grid for it.
  // Note use of streams to get concurrency between sub-sorts
  if(left < nright) {</pre>
      cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
      quicksort<<< ..., s1 >>>(data, left, nright);
  if(nleft < right) {</pre>
      cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
      quicksort <<< ..., s2 >>> (data, nleft, right);
host void launch quicksort(int *data, int count)
  quicksort <<< ... >>> (data, 0, count-1);
```


Advantages

- Less work for CPU
- Less synchronizing (from CPU side)
 - Easier programming!





Many other sorting algorithms exist... like this one this year:

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 218 (2023) 1682-1691

International Conference on Machine Learning and Data Engineering New GPU Sorting Algorithm Using Sorted Matrix Sumit Kumar Gupta^{a,*}, Dr. Dhirendra Pratap Singh^a, Dr. Jaytrilok Choudhary^a ^aDepartment of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India

Procedia Computer Science www.elsevier.com/locate/procedia

Other non-trivial algorithms

FFT, Fast Fourier Transform

Distance transform

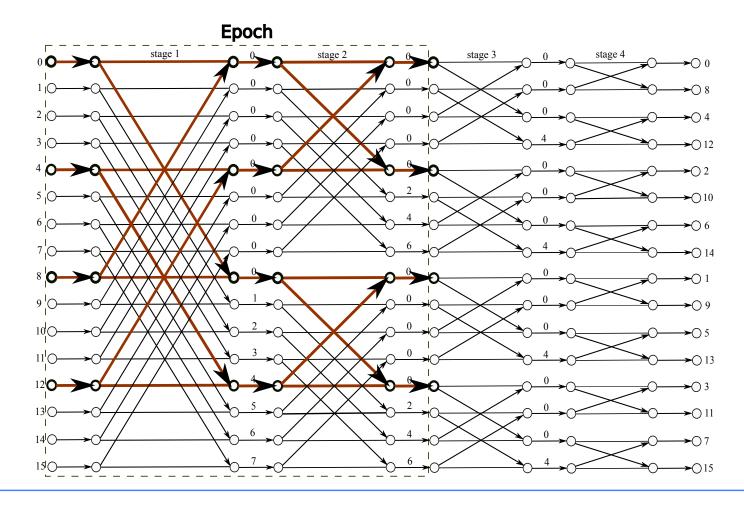
Fractal Brownian Motion



Fast Fourier Transform

Based on a sequence of "butterflies"

Similarly to Bitonic sort, can be computed several stage in one run for the "smaller" stages



Distance transform

Fast and simple version by Danielsson 1980: "Jump flooding"

Makes "jumps" of various length



Every "jump" needs to be one kernel run!

Fractal Brownian Motion

Used for e.g. realistic looking procedural terrains

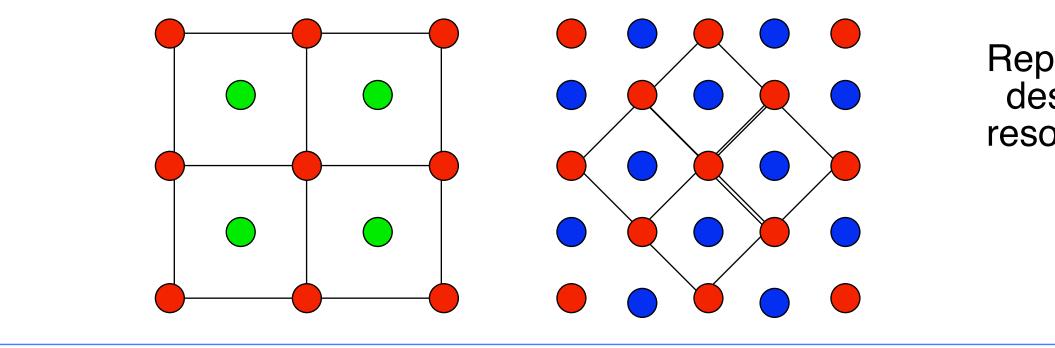
Among other methods:

- Diamond-square
- Multi-pass Perlin noise

Diamond-square algorithm

1) Midpoint from corners

2) Edge from corners and midpoints



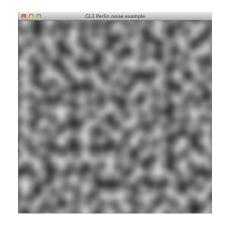
Repeat to desired resolution

Multi-pass Perlin noise

Theoretically slower than Diamond-square

BUT

can be computed by independent threads! One kernel run!



Single octave

FBM needs log N passes of different frequency

Conclusion

Algorithms with dependency in computed data often need multiple kernel runs.

This is an extra cost!

Does it pay when the computational complexity is lower?

